翻訳と辞書
Words near each other
・ Best Kirari
・ Best Kissers in the World
・ Best Laid Plans
・ Best Laid Plans (1999 film)
・ Best Laid Plans (2012 film)
・ Best Laid Plans (David Torn album)
・ Best Laid Plans (Once Upon a Time)
・ Best Laid Plans (Sandra McCracken album)
・ Best Laid Plans (sitcom)
・ Best Leading Actor in a Mini-series (Golden Bell Awards)
・ Best Leading Actor in a Television Series (Golden Bell Awards)
・ Best Leading Actress in a Mini-series (Golden Bell Awards)
・ Best Leading Actress in a Television Series (Golden Bell Awards)
・ Best Life
・ Best Life Music
Best linear unbiased prediction
・ Best Little Horror House in Langley Falls
・ Best Lock Corporation
・ Best Look Lately
・ Best Love Song
・ Best Maid Cookie Company
・ Best Major League Baseball Player ESPY Award
・ Best Male Action Sports Athlete ESPY Award
・ Best Male Athlete ESPY Award
・ Best Male Athlete with a Disability ESPY Award
・ Best Male College Athlete ESPY Award
・ Best Male College Basketball Player ESPY Award
・ Best Male Golfer ESPY Award
・ Best Male Soccer Player ESPY Award
・ Best Male Tennis Player ESPY Award


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Best linear unbiased prediction : ウィキペディア英語版
Best linear unbiased prediction
In statistics, best linear unbiased prediction (BLUP) is used in linear mixed models for the estimation of random effects. BLUP was derived by Charles Roy Henderson in 1950 but the term "best linear unbiased predictor" (or "prediction") seems not to have been used until 1962.〔
〕 "Best linear unbiased predictions" (BLUPs) of random effects are similar to best linear unbiased estimates (BLUEs) (see Gauss–Markov theorem) of fixed effects. The distinction arises because it is conventional to talk about ''estimating'' fixed effects but ''predicting'' random effects, but the two terms are otherwise equivalent. (This is a bit strange since the random effects have already been "realized" − they already exist. The use of the term "prediction" may be because in the field of animal breeding in which Henderson worked, the random effects were usually genetic merit, which could be used to predict the quality of offspring (Robinson〔 page 28)). However, the equations for the "fixed" effects and for the random effects are different.
In practice, it is often the case that the parameters associated with the random effect(s) term(s) are unknown; these parameters are the variances of the random effects and residuals. Typically the parameters are estimated and plugged into the predictor, leading to the Empirical Best Linear Unbiased Predictor (EBLUP). Notice that by simply plugging in the estimated parameter into the predictor, additional variability is unaccounted for, leading to overly optimistic prediction variances for the EBLUP.
Best linear unbiased predictions are similar to empirical Bayes estimates of random effects in linear mixed models, except that in the latter case, where weights depend on unknown values of components of variance, these unknown variances are replaced by sample-based estimates.
==Example==

Suppose that the model for observations is written as
:Y_j= \mu + x_j^T\beta +\xi_j + \varepsilon_j, \,
where ''ξj'' and ''εj'' represent the random effect and observation error for observation ''j'', and suppose they are uncorrelated and have known variances ''σξ''2 and ''σε''2, respectively. Further, ''xj'' is a vector of independent variables for the ''j''th observation and ''β'' is a vector of regression parameters. The BLUP problem of providing an estimate of the observation-error-free value for the ''k''th observation,
:\tilde= \mu + x_k^T\beta +\xi_k ,
can be formulated as requiring that the coefficients of a linear predictor, defined as
:\widehat= \sum_^n c_ Y_j ,
should be chosen so as to minimise the variance of the prediction error,
:V= \operatorname(\tilde- \widehat),
subject to the condition that the predictor is unbiased,
:\operatorname(\tilde- \widehat)=0 .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Best linear unbiased prediction」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.